Find the value of \(a_{2}+a_{4}+a_{6}+ \cdots+a_{98}\) if \(a_{1},a_{2},a_{3},\cdots\) is an arithmetic progression with common difference 1, and \(a_{1}+a_{2}+a_{3}+ \cdots+a_{98} = 137\).

(第二届AIME1984 第一题)