Let \(\overline{CH}\) be an altitude of \(\triangle ABC\). Let \(R\,\) and \(S\,\) be the points where the circles inscribed in the triangles \(ACH\,\) and \(BCH^{}_{}\) are tangent to \(\overline{CH}\). If \(AB = 1995\,\), \(AC = 1994\,\), and \(BC = 1993\,\), then \(RS\,\) can be expressed as \(m/n\,\), where \(m\,\) and \(n\,\) are relatively prime integers. Find \(m + n\,\).

(第十一届AIME1993 第15题)