Find the positive integer \(n\,\) for which

\(\lfloor \log_2{1}\rfloor+\lfloor\log_2{2}\rfloor+\lfloor\log_2{3}\rfloor+\cdots+\lfloor\log_2{n}\rfloor=1994\).

(For real \(x\,\), \(\lfloor x\rfloor\,\) is the greatest integer \(\le x.\,\))

(第十二届AIME1994 第4题)