For any positive integer \(x_{}\), let \(S(x)\) be the sum of the digits of \(x_{}\), and let \(T(x)\) be \(|S(x+2)-S(x)|.\) For example, \(T(199)=|S(201)-S(199)|=|3-19|=16.\) How many values of \(T(x)\) do not exceed 1999?

(第十七届AIME1999 第5题)